Stupid velocity

There’s a lot in this world about which I am not stupid: practically, I’ve navigated life more or less effectively so far.  But more and more often I notice am annoyed that there is someone at the table who professes to know more about [X] than I do.   And the more I am expected to know, the more I question what I think I know.  Maybe this is why I am enjoying the math classes: I’m allowed to be stupid* there.  I am supposed to be stupid there.

WhiteboardWithConcert

Years ago, a professor was describing the idea of “lines of flight” from 1000 Plateaus, and he said (loosely paraphrased) that it means running headlong through a mountain rather than intentionally trying to go around it.  His example was a 3¢ bank fee that you disagreed with.  Rather than protesting and not paying it, which would ultimately benefit the bank, you should write a separate check for the 3¢ every time the fee is due.  If we all wrote separate checks for these tiny fees, we could cripple the bank by costing it more money to process the fee than the fee itself is worth.  Don’t avoid the fee.  Force everyone to look at the fee in excruciating detail.  Maybe this is what I’m doing with my own mathematical stupidity: running headlong into it and gazing on every horrifying crevice.  To what end, I don’t know.

All of this to say: I have finally passed MATH 140: Introduction to Mathematical Analysis.  It took me three tries, and I wasn’t entirely sure that I had passed until final grades were posted.  I’m registered to take Calculus in the fall.  Also, I’m getting better at finding textbook deals, so the book this time was only$180, and I bought the Student Solutions Manual up front, too–that might have saved me last semester, if only it had been “required” and not “recommended.”

The velocity of my stupidity is picking up steam.  Maybe even accelerating?

*My use of stupidity is loosely based on what I vaguely remember of Derrida and Ronell.  Probably stupidly misinterpreted.

WIDE-EMU: Writing wants reluctance

I’m preparing for the WIDE-EMU conference in a couple of weeks which has a theme of “What does writing want?”  My colleague and I have chosen to tentatively answer this question with, “Writing wants reluctance.”  For me, I reluctantly write about math (here, on this very blog).  As part of the “Phase II: Respond” pre-conference work, this particular post details some of my reluctance toward the writing-via-math project in which I am engaged.  This post ends with a plea for your input on my actual presentation at WIDE-EMU.

Reluctance 1: Majoring in math.  When I decided last year to enroll at the institution where I teach English and to declare myself a math major, I did not have a very clear rationale for doing so.  If I wanted to learn something new, why not attend a seminar in my own field that I could add to my CV? Why math?  And if it had to be math, why not join a MOOC or audit a class?  The best professional reason I had, as a composition instructor, was that I wanted to better relate to my students by remembering what it felt like to be uncomfortable in a classroom. Humanities classrooms (English, Spanish, history, philosophy) have been my go-to happy places for a long time, so I needed a subject that I had avoided academically.  And I needed to feel the same kind of stress, commitment, and humility as students with a lot (only their entire futures) riding on their coursework.  Enrolling as a degree-seeking Math major is well outside my comfort zone, costs money, and puts my real transcript at risk: three factors that make this a relatively authentic experience.

Reluctance 2: Blogging. The decision to blog about my math journey had a clearer rationale. I frequently ask my students to write publicly, I require that they share drafts, and I offer points for engaging in reflection.  But many of them are as uncomfortable writing about my assignments as I am writing about math:   I don’t know how to write about math.  I don’t know how to relate basic math to the things I do know.  I don’t know who my audience is, what they already know, or what they want to read.   My attempts to make it “meaningful” are kludgy, stilted, and sophomoric, and posting these attempts online has been mortifying.  And I have all of these doubts with every single post, despite the fact that I am an enthusiastic student and am thoroughly enjoying learning basic algebra.  I hit “publish” with reluctance, every single time.  For many of my students, the experience of writing publicly in a composition course probably feels similar.  I’m not sure how to address yet the affective and effective role of reluctance on this writing, but I can feel it at work.  Further down the road, I will work on expressing that more clearly.

Reluctance 3: Asking for help.  I am approaching my few minutes at the front of a room during WIDE-EMU as my chance to give a “classroom presentation” in which I reluctantly-enthusiastically try to explain, in a meaningful and interesting way, a basic mathematical concept on which I have a tenuous grasp and that somehow relates to writing (maybe magnetic reluctance?).  If you have any suggestions, requests, words of encouragement, or cautions, please feel free to comment on this blog post.

PS: I passed my first test of the semester and have almost-a-B in MATH 140 right now.  Hooray!

 

 

Reflection with respect to the why-axis

20160430_141832
When drawing functions on a graph, adding a little negative sign in just the right place will make the lines flip sideways or vertically: this is called “reflecting with respect to the y-axis” (or the x-axis). Similarly, this little algebra class has flipped some of my directions and perspectives.

Mercifully, the semester has ended.  People keep asking me (because I keep bringing it up) why I took a math class.  Originally, I wanted to better understand some of my favorite theorists and writers.  While that’s still true, I don’t know now if it’s entirely true.  I’m not at all sure why I’m doing this.  With all the time I spent on this course, wouldn’t I have been smarter to do something overtly career-related?  Maybe.  Probably.  I don’t know.

In January, I planned to work ahead so I could linger over important concepts and make astounding connections.  But that never happened.  It was all I could do to keep up with the basics. I had too much else going on.  Everyone does.  A writing student wrote something similar in his reflection on my English course.  In fact, he described it as “crushing.” I empathize, but I also disagree:  a particular course is not crushing.  It’s just one variable within a larger societal structure designed to present “crushed” as our natural state of being.  (In other words: If my course hadn’t crushed him, something else would have.)  Same goes for math. And even when a course is pared down to make room for lingering, students (including myself) will likely absorb that extra time into other, more tangible and measurable commitments.

Despite the difficulty in assessing a good linger, I nonetheless believe in its value.  A thoughtful reflection can far outweigh the more easily quantified skills.  And so here’s mine:

From the perspective of teaching and student-ing:  Doing math problems together in class is super helpful.  Sitting on the back row is, generally, the bad idea I always knew it was.  Offering to help a student during office hours has huge impact, even if the student never actually comes to office hours. Test anxiety is real, and “eating a good breakfast” doesn’t help.  Grading math tests seems to be as labor-intensive as grading essays.

From the perspective of learning:  THIS WAS SO HARD.  It was a lot of trial-and-error, repetition, and memorization.  I’m not advanced enough yet to understand the whys, the causes, or the “meaning” in most of what we learned, and that made it even harder to commit a formula or process to memory.  Note to self: You felt the same way when you were learning to knit and could only make square things.  Eventually, you did knit a sock. Be patient.

From the perspective of math:  With only the very tippiest tip of the iceberg under my belt, I see now that basic math is not the tight narrative I was expecting.  I knew the advanced stuff would be hairy and imaginary and unpredictable, but I was naively expecting to find a solid foundation in this basic algebra class–I guess because the last time I tried to learn algebra was in high school where ideas are often presented as immutable Truths.  Instead, I see math has the same bunch of tiny little truths with which postmodernism has littered the humanities.  I should have known: it’s always turtles all the way down.  Not to be overly dramatic, but this is causing some existential angst to flare up. Note to self: Take a breath.  The world isn’t any less stable than it was this time last year.

What’s next:  I have passed MATH 120a: Algebraic Methods somewhere between the skin of my teeth and the hair on my chinny-chin-chin. In the upcoming summer session, I’m taking MATH 140: Introductory Mathematical Analysis.  Despite the awesome course title, I think it’s really just Algebra II since we’re using the same book as 120a.  My (likely faulty) expectation is that 140 won’t be as difficult: I won’t have to do so much legwork to get caught up, and the math classroom won’t feel so unfamiliar.  However, it’s 15 weeks of material done in 7 weeks.  So we’ll see.  I’ll check in here during the first week of July.