Hebetude, and other words I learned this spring

WordListI’ve had some glorious downtime recently and managed to read Combes, Finn, and Ronell.  I looked up all the words I had never seen before, the words I could only make educated guesses about, and the words I wanted to confirm based on context.  It’s what I tell my students to do, but it had been a long time since I’ve done it myself.  Tedious but fruitful. Also, I’m a little gratified that, of the 37 words, spellcheck claimed 12 did not exist.  Here’s my list, which includes the authors’ original sentences.

Anodyne: “Many poems seem to respond to their prompts with the same flat, affectless tone as the Mechanical Turk system itself, offering up anodyne confections of cliché and truism, completing the task of composition in as little as twelve seconds” (Finn 140).

Apeiron: “With this reference to nature, Simondon places himself in a pre-Socratic lineage, which is asserted explicitly in his definition of nature as ‘reality of the possible, in the form of this apeiron from which Anaximander generates all individuated forms.’“ (Combes 46).

Apophenia: “One of the most compelling aspects of games is precisely the seduction of algorithmically ordered universes–spaces where our apophenia can be deeply indulged, where every event and process operates according to a rule set” (Finn 123).

Arbitrage: “These companies are engaged in a form of algorithmic arbitrage, handling the messy details for us and becoming middlemen in every transaction” (Finn 97).

Autopoiesis: “This line of argument evolved into the theory of autopoiesis proposed by philosophers Humberto Maturana and Francisco Varela in the 1970s, the second wave of cybernetics which adapted the pattern-preservation of homeostasis more fully into the context of biological systems” (Finn 28).

Avuncular: “He leaps over the diegetic boundary of the story to touch us in a way that manages to be both avuncular and calculating” (Finn 107).

Badinage: “Algorithmic platforms now shape effectively all cultural production, from authors engaging in obligatory Twitter badinage to promote their new books to the sophisticated systems recommending new products to us” (Finn 53).

Catachrestic: “The point to be considered here, though, is that God needs the catachrestic maneuver in order to love” (Ronell 54).

Chiaroscuro: “The images show the data points of cars and office lights, buildings and structures, weather and movement patterns in long, unmoving chiaroscuro shots” (Finn 105).

Coelenterate: “Although the example of coelenterates on which Simondon bases his description of the individuation of living beings may appear surprising, or even poorly chosen in light of the difficulty in this case of precisely determining the site of individuality, it does not seem to me that the author made this choice lightly” (Combes 24).

Colloidal: “The clay can eventually be transformed into bricks because it possesses colloidal properties that render it capable of conducting a deforming energy while maintaining the coherence of molecular chains, because it is in a sense ‘already in form’ in the swampy earth” (Combes 6).

Concrescence: “Insofar as any technical individual is a system of elements organized to function together and characterized by its tendency toward concretization, we must distance ourselves from human intentionality and enter into the concrescence of technical systems in order to understand the mode of existence of technical objects” (Combes 58).

Consilient: “The spare utility of the search bar or the interfaces for Gmail, YouTube, and other essential services mask a deep infrastructure designed, ultimately, to construct a consilient model of the informational universe.                (Finn 66).

Diegetic: “Like other elements of the diegetic background of the show, the Enterprise’s talking computer was meant to be unremarkable and efficient” (Finn 67).

Dyad: “To begin with the operation of individuation is to place oneself at the level of the polarization of a preindividual dyad (formed by an energetic condition and a structural seed)” (Combes, 7).

Elide: “Algorithmic systems and computational models elide away crucial aspects of complex systems with various abstracting gestures, and the things they leave behind reside uneasily in limbo, known and unknown, understood and forgotten at the same time” (Finn 51).

Farragoes: “We tell collective jokes and stories using comment threads and hashtags, building shared narratives and farragoes that can evolve into sophisticated techincal beings in their own right as Internet memes as superficial as #lolcats or as potent as #blacklivesmatter” (Finn 193).

Fiat: “The blockchain relies on a computational fiat by rewarding the miners who bring the most computational power to bear on calculating each new block” (Finn 166).

Fungible: “If software is a metaphor for metaphors, the algorithm becomes the mechanism of translation: “the prism or instrument by which the eternally fungible space of effective computability is focalized and instantiated in a particular program, interface, or user experience” (Finn 35).

Hebetude: “Back at his desk from the Orient, Flaubert famously bounces Charles Bovary’s hopeless hebetude against his wife’s destructive jouissance; the life span of the nonstupid, frustrated and shortened, considerably fades, whereas the dumbest, including the calculating pharmacist, survive” (Ronell 38).

Homeostasis: “Central to this upper ascent is the notion of homeostasis, or the way that a system responds to feedback to preserve its core patterns and identity” (Finn 28).

Hylomorphism: “In this respect, the philosophical tradition boils down to two tendencies, both of which are blind to the reality of being before all individuation: atomism and hylomorphism” (Combes 1).

Hypostasis: “Could we not avoid this hypostasis of a ‘sense of becoming’ wherein normativity culminates in the notion of ‘error against becoming’?” (Combes 62).

Imbrication: “Google’s near omni-presence online, its imbrication in countless cultural systems that do not merely enable but effectively define certain cultural fields of play for billions of people, make this more than just a suggestion service or even a sophisticated form of advertising” (Finn 74).

Inchoate: “Thus the animal appears to the observer of individuation as ‘an inchoate plant,’ that is, as a plant that was dilated at the very beginning of its becoming;” (Combes 22).

Isomorphic: “Thus, in super-cooled water” (i.e., water remaining liquid at a temperature below its freezing point), the least impurity with a structure isomorphic to that of ice plays the role of a seed for crystallization and suffices to turn the water to ice” (Combes 3).

Littoral: “Part of the work of the Netflix culture machine is to continually course-correct between that narrow aesthetic littoral and the vast ocean of abstraction behind it” (Finn 108).

Ontogenesis: “As is always the case with Simondon, philosophy will remain a philosophy of individuation, an ontogenesis” (Combes 58).

Parallelepipedic: “Now, the clay matter and the parallelepipedic form of the mold are only endpoints of two technological half-trajectories, of two half-chains that, upon being joined, make for the individuation of the clay brick” (Combes 5).

Predation: “The heroes of Lewis’s story are those trying to eliminate the ‘unfair’ predation of HFT algorightsm and create an equal playing field for the trading of securities as they imagine such things ought to be traded” (Finn 153).

Prenoetic: “The preindividual dyad is prenoetic as well, which is to say, it precedes both thought and individual” (Combes 7).

Propitiating: “Yet these tricks come with a script that Siri must learn–for Siri to deliver each punchline we must carefully set up the joke, propitiating the culture machine with appropriate rituals” (Finn 60).

Puerile: “There is something unquestionably Nietzschean about treating practically everyone as puerile and stupid” (though Nietzsche never did so–he credited them with cleverness and, at most, with acting stupid or like Christians, who introduced a substantially new and improved wave of stupidity, revaluating and honoring the stupid idiot: O sancta simplicitas!)” (Ronell 39).

Reticular: “And while ethics is said to be ‘sense of individuation,’ and there is ethics only ‘to the extent that there is information, that is, signification, ethics is simultaneously apprehended as reticular reality, the capacity to link the preindividual in many acts” (Combes 65).

Scholium: “Scholium: The intimacy of the common (chapter title)” (Combes 51).

Stochastic: “Computational systems are developing new capacities for imaginative thinking that may be fundamentally alien to human cognition, including the creation of inferences from millions of statistical variables and the manipulation of systems in stochastic, rapidly changing circumstances that are temporally behind our ability to effectively comprehend” (Finn 55).

Thanatological: “In sum, what confers separate individuality on a living being is its thanatological character–the fact of detaching from the original colony and, after having reproduced, dying at a distance from it” (Combes 24).



After a two month hiatus from learning anything new, the summer session careened into view.  MATH 140: Introductory Mathematical Analysis started over two weeks ago, and only just now, today, do I have time to take a breath.  Initial observation: summer class timelines are not to be taken lightly.

This is the course in which we finish up the algebra begun in MATH 120, and we start trigonometry.  How did I not know that trigonometry was just Super Fantastic Geometry?  I vaguely remember enjoying geometry in high school, although my only concrete memory is the gift of a pencil that said, “A logarithm is an exponent.”

IMG_20160713_131948In trigonometry, we’re learning how to calculate the speed of airplanes, the velocity of tsunami waves, and the ascent of hot air balloons.  We can also calculate a ship’s bearings and a satellite’s orbit.  Of course, algebra is simmering under the surface of it all: even if I get the concept and pick the right formula, I can’t complete the calculation without stupid PEDMAS poking me in the eye again.*  But the ability to look at a triangle on the page and see movement and change in the physical world is powerful.  I am in love.

The ability to see movement and change through language is powerful too, and it’s one reason I was an English major from the get-go.  These days, I write a lot of things without knowing my words’ trajectories once launched.  This blog is one of those things.  Many of my social media posts are these things, too.  Someone blocked me last week because of a comment I made related to #BlackLivesMatter and the Dallas sniper.  Now that I’m blocked, I can’t access the comment to delete or amend it, I can’t respond, and I can’t see what anyone else has written.  That ship has sailed, and in which direction I have no idea.

Who knows what other trajectories my writing has taken or what kind of change I have effected, I hope more often for better than for worse.  But in just two short weeks of trigonometry, this power pops all over again, clearly and consistently. I am excited to have been reminded that it is sometimes possible to see a large chunk of the world on a relatively small piece of paper.

*Look! I just tried to express a relationship between algebra and trigonometry, which I couldn’t have done six months ago.  Related: I still don’t know what calculus means.

Quadratics and calligrams

The curve of the banana is a parabola that can be calculated with the quadratic formula.  More at http://blogs.swa-jkt.com/swa/10326/2012/11/21/quadratic-functions-in-the-real-world/

A month into the semester, and my algebra book has not yet mentioned this critical bit: the two solutions produced by a quadratic equation are actually the points on a graph that a parabola passes through.  Not until ch 3 this week, “Functions and Graphs,” when finally: we have some pictures.  This changes everything.

A well-known calligram about the Eiffel Tower by Guillaumme Apollinaire. See more at http://www.galleryintell.com/artex/poems-peace-war-guillaume-apollinaire/

Coincidentally, this week my own students and I read the part of Foucault’s The Order of Things where he mentions “the beautiful calligrams dreamed of by Linnaeus” (135).  A calligram is a piece of text written in the shape of the object it describes.  It’s often associated with poetry, but it’s also tied by definition to pictures.

Botanist Carl Linnaeus attempted to use calligrams in his scientific descriptions of plants: “the order of the description, its division into paragraphs, and even its typographical modules, should reproduce the form of the plant itself.  That the printed text, in its variables of form, arrangement, and quantity, should have a vegetable structure” (135).  Linnaeus felt that his classification system would be better represented if he used the lines on the page as both text and image.  The idea of overlaying a mathematical, formulaic grid onto language in order to suss out buried meanings and connections is nothing new.  Centuries later Lacan would try something similar (in my mind, anyway) by creating mathemes: graphic representations of his ideas that you can now buy on tee-shirts.

“The Treachery of Images,” Magritte  (http://collections.lacma.org/node/239578)

In a separate essay called “This is not a pipe,” Foucault discusses Magritte’s paradoxical painting as another type of calligram “secretly formed, and then carefully undone.”  He writes that calligrams “bring text and image as close as possible to each other,” and usually the calligram erases the binary between: “to show and to name; to figure and to speak; to reproduce and to articulate; to intimate and to signify; to look at and to read.”  In Magritte’s work, says Foucault, through the contradiction and the conflation of the words and image, this is an act of mischief.

The graph of a quadratic equation seems to be a mischievous  variation on the calligram, one that conflates the idea of general and specific, of a formula to be applied universally and of a specific diagram of a particular banana.  Seeing the equation and its result together simultaneously forms and undoes their relationship, at least for the uninitiated (as I am), at which point we are (I am) surprised and delighted to find the correspondence.

And a parting question for those who are already fluent in quadratics (can you say it that way?). I imagine that having both the equation and the graph is a bit redundant, the way Neo sees the Matrix code and the agents simultaneously, so once fluent, does the act of plotting the graph continue to generate any meaning, laughter, or surprise?